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a b s t r a c t 

Online streaming feature selection which deals with streaming features in an online manner plays a crit- 

ical role in big data problems. Many approaches have been proposed to handle this problem. However, 

most existing methods need domain information before learning and specify some parameters in ad- 

vance. In real-world applications, we cannot always require the domain information and it is a big chal- 

lenge to specify uniform parameters for all different types of data sets. Motivated by this, we propose a 

new online streaming feature selection method based on adaptive density neighborhood relation, named 

OFS-Density. More specifically, with the neighborhood rough set theory, OFS-Density does not require the 

domain information before learning. Meanwhile, we propose a new adaptive neighborhood relation using 

the density information of the surrounding instances, which does not need to specify any parameters in 

advance. By the fuzzy equal constraint, OFS-Density can select features with a low redundancy. Finally, 

experimental studies on fourteen datasets show that OFS-Density is superior to traditional feature selec- 

tion methods with the same numbers of features and state-of-the-art online streaming feature selection 

algorithms in an online manner. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Feature selection aims to select a subset of feature space from 

the original data set which is “as good as possible”. It plays an im- 

portant role in machine learning and pattern recognition [1] . The 

main task of feature selection is to remove irrelevant and redun- 

dant features from the feature space. There are many benefits from 

feature selection, such as reducing storage requirements and train- 

ing time, facilitating data visualization and improving predictive 

accuracy [2] . 

With the increase of the data volume and dimensionality, tra- 

ditional feature selection methods cannot fit the demand in ef- 

ficiency any more [3] . Online streaming feature selection which 

deals with streaming features has attracted much attention in re- 

cent years [3–11] . Streaming features are defined as features that 

flow in one by one over time whereas the number of training ex- 

amples is fixed [6] . As the features flow in one by one over time, 

we must decide whether to keep or discard the new arriving fea- 

ture at each time stamp and we do not know the information of 

whole feature space before learning. There are two major reasons 

for online streaming feature selection: 1) The feature space is un- 
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known or even infinite and 2) the feature space is known but fea- 

ture streaming offers many advantages [9] . However, most of ex- 

isting online streaming feature selection methods need domain in- 

formation before learning and need specifying some parameters in 

advance. For instance, Grafting [4] needs to specify the parameter 

λ before learning and a proper value of λ is important to the final 

predictive accuracy. However, in real-world applications, we can 

not require the domain information before learning. Meanwhile, it 

is a challenge to specify uniform parameters for all types of data 

sets and it is infeasible to specify different parameters for differ- 

ent data sets. Motivated by this, we design a new online streaming 

feature selection method which need not any domain information 

and does not need to specify any parameters before learning. 

Rough set theory [12] , as an effective tool for feature selection, 

rule extraction, and knowledge discovery can provide an important 

advantage, that is, rough set-based data mining does not require 

any domain knowledge other than the given dataset. For example, 

OS-NRRSARA-SA [9] is a classical rough set based online streaming 

feature selection method which need not specify any parameters 

in advance. However, OS-NRRSARA-SA cannot deal with numeri- 

cal data directly, because the classical Rough Set theory is origi- 

nally proposed to deal with categorical data. In real-world appli- 

cations, there are many numerical features in the data sets. Thus, 

fuzzy rough set [13–18] and neighborhood rough set [19–21] which 

supports both continuous and discrete data was proposed to deal 

with this challenge. OFS-A3M [10] based on neighborhood rough 
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set theory is a new method for online streaming feature selec- 

tion. With a new GAP neighborhood relation, OFS-A3M does not 

require domain information before learning and need not specify 

any parameters in advance. Nevertheless, OFS-A3M uses exact de- 

pendency equal constraint for feature redundancy analysis, which 

is too strict for real data sets and leads to some redundant features 

in the selected feature subset. 

Therefore, in this paper, we propose a new online streaming 

feature selection method, named OFS-Density. Our contributions 

are as follows: 

• Based on neighborhood rough set, OFS-Density does not require 

domain information before learning. As we know that, rough 

set-based data mining does not require any domain knowledge. 
• We propose a new neighborhood relation which using the den- 

sity information of the surrounding instances. With this new 

density neighborhood relation, OFS-Density can automatically 

select a proper number of neighbors during online feature se- 

lection. Therefore, OFS-Density need not specify any parameters 

in advance. 
• OFS-Density uses a fuzzy equal constraint for redundant anal- 

ysis to make the selected feature subset with low redundancy. 

Rough set based feature selection methods always use the con- 

dition of feature significance equal to zero for feature redun- 

dant analysis. However, in real data sets, the exactly equal con- 

straint is too strict. With fuzzy equal constraint, OFS-Density 

can consider more candidate features for feature redundancy 

analysis which makes the final selected feature subset small 

and discriminative. The parameter λ used for fuzzy equal con- 

straint makes OFS-Density can consider more features for re- 

dundant analysis. Meanwhile, in Section 5.2 , we conclude that 

the λ value is not the bigger the better and it is set to λ = 0 . 05 

for OFS-Density. 
• Extensive experimental studies of eight traditional feature se- 

lection methods and seven online streaming feature selec- 

tion approaches show that our proposed algorithm can get 

better performance than traditional feature selection methods 

with the same number of features and state-of-the-art online 

streaming feature selection approaches in an online manner. 

The remainder of the paper is organized as follows. 

Section 2 discusses related work. Section 3 gives a brief introduc- 

tion to neighborhood rough set theory. Section 4 presents our new 

proposed method for streaming feature selection. Section 5 reports 

experimental results and Section 6 concludes the paper. 

2. Related work 

In this section, we give an introduction to some representative 

traditional feature selection methods and the state-of-the-art on- 

line streaming feature selection algorithms. 

Feature selection can have numerous benefits such as faster 

model training, reduced susceptibility to overfitting, offsetting the 

pernicious effects of the curse of dimensionality, and reducing stor- 

age, memory, and processing requirements during data analysis [1] . 

According to how the label information is used, feature selection 

algorithms can be divided into supervised [22–24] , unsupervised 

[25] and semi-supervised [26] ones. More specifically, Fisher Score 

[27] computes a score for each feature as the ratio of inter-class 

separation and intra-class variance. ReliefF [28] estimates the qual- 

ity of the features according to how well their values differenti- 

ate data samples that are near to each other. MI [29] considers 

the mutual information between the distribution of the values of a 

given feature and the membership to a particular class. FSV [30] is 

a wrapper method, where the feature selection process is injected 

into the training of an SVM by a linear programming technique. 

Laplacian Score [31] does not use the class information of each in- 

stance, and the importance of a feature is evaluated by its power 

of locality preserving. In order to model the local geometric struc- 

ture, this method constructs a nearest neighbor graph. Laplacian 

Score algorithm seeks those features that respect this graph struc- 

ture. INF [32] is an unsupervised graph-based filter method. In the 

INF formulation, each feature is a node in the graph, a path is a 

selection of features. The higher the centrality score, the more im- 

portant (or more different) the feature. It assigns a score of impor- 

tance to each feature by taking into account all possible feature 

subsets as paths on a graph. LLC-FS [33] associates a weight to 

each feature or kernel and incorporates it into the built-in regular- 

ization of the LLC [34] algorithm to take into account the relevance 

of each feature or kernel for the clustering. Correspondingly, the 

weights are estimated iteratively in the clustering process. Then, 

the weights of those irrelevant features or kernels can be shrunk 

to zero. 

Traditional feature selection methods assume that all features 

in the feature space are available before learning. However, in 

some real-world applications such as [35,36] , features may exist in 

a streaming format. Online streaming feature selection which deals 

with feature streams in an online manner, has attracted much at- 

tention in recent years and played a critical role in dealing with 

high-dimensional problems [3–7,9] . 

More specifically, Perkins and Theiler [4] proposed the Graft- 

ing algorithm based on a stagewise gradient descent approach 

for online feature selection. Grafting treats feature selection as an 

integral part of learning a predictor within a regularized frame- 

work. If the improvement of adding a new arriving feature in the 

model is greater than a predefined threshold λ, this new arriv- 

ing feature will be selected. Grafting needs the information of the 

global feature space to choose a good value for the important reg- 

ularization parameter λ in advance. Zhou et al. [5] proposed the 

Alpha-investing algorithm based on streamwise regression for on- 

line streaming feature selection. Alpha-investing does not need a 

global model and it is one of the penalized likelihood ratio meth- 

ods. Nevertheless, Alpha-investing requires prior knowledge of the 

structure of the feature space to heuristically control the choice 

of candidate feature selection. Wu et al. [6] presented an online 

streaming feature selection framework with two algorithms called 

OSFS (Online Streaming Feature Selection) and fast-OSFS. There 

are two major steps in OSFS, including online relevance analy- 

sis (discards irrelevant features) and online redundancy analysis 

(eliminates redundant features). OSFS uses the conditional inde- 

pendence test for feature selection which needs a large number 

of training instances. Thus, on the datasets with high dimension- 

ality and small samples, this may lead to information missing. Yu 

et al. [3] proposed a Scalable and Accurate Online feature selection 

Approach (SAOLA) for extremely high dimensional datasets. SAOLA 

employs novel online pairwise comparison techniques and main- 

tains a parsimonious model over time in an online manner. SAOLA 

needs to specify a relevance threshold α in advance to determine 

whether two features are relevant, although the relevance thresh- 

olds do not have a significant impact on the algorithm. 

In addition, rough set theory, proposed by Pawlak [12] , is an 

effective tool for feature selection, rule extraction, and knowledge 

discovery. Rough set based data mining does not require any do- 

main knowledge before learning. There are some research works 

of online streaming feature selection by using Rough set theory. 

More specifically, Eskandari et al. [9] proposed a classical Rough 

Set based method (OS-NRRSARA-SA) for online streaming feature 

selection. OS-NRRSARA-SA uses classical significance analysis con- 

cepts in Rough Set theory to control an unknown feature space 

in online streaming feature selection problems. OS-NRRSARA-SA 

need not specify any parameters before learning. However, OS- 

NRRSARA-SA is a classical Rough Set based method which can- 
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not handle numerical features directly. Zhou et al. [10] proposed 

a new online streaming feature selection method OFS-A3M based 

on a new neighborhood rough set relation with adapted neighbors. 

With the maximal-dependency, maximal-relevance and maximal- 

significance evaluation criteria, OFS-A3M can select features with 

high correlation, high dependency, and low redundancy. There are 

mainly two differences between this work and OFS-A3M. First, 

OFS-A3M proposed a new neighborhood relation named as Gap, 

which uses the gap information of the neighbors. In this paper, we 

proposed a new neighborhood relation called Density, which uses 

the density information of the neighbors. Density-based neighbor- 

hood relation uses the information of surrounding neighbors as a 

whole, while Gap just uses the distance information of the previ- 

ous instance and next instance. Second, OFS-A3M uses exact de- 

pendency equal constraint for the analysis of feature redundancy. 

It is too strict for real-world data sets, and it probably leads to 

some redundant features in the selected feature subset. In this 

manuscript, we use a fuzzy equal constraint for redundant anal- 

ysis, which makes the selected feature subset present lower re- 

dundancy than OFS-A3M. Zhou et al. [11] proposed a new on- 

line streaming feature selection method for high-dimensional and 

class-imbalanced data, called K-OFSD. K-OFSD uses the dependency 

between condition features and decision classes for feature selec- 

tion. In terms of Neighborhood Rough Set theory, K-OFSD uses 

the information of K nearest neighbors to select relevant features 

which can get higher separability between the majority class and 

the minority class. K-OFSD is designed for class-imbalanced data 

and it needs to specify the parameter K in advance. Diao et al. 

[37] proposed new methods to carry out the online selection with 

incrementally changing on features or instances. Four possible dy- 

namic selection scenarios (feature addition, feature removal, in- 

stance addition, instance removal) are considered, with algorithms 

proposed in order to handle such individual situations. Based on 

fuzzy-rough sets theory, the proposed methods need not specify 

any parameters before learning and are demonstrated to be effec- 

tive in dealing with real-world data sets. 

3. Neighborhood rough set 

In the classical rough set model [12] , the objects with the same 

feature values in terms of attributes B are drawn together and 

form an equivalence class, denoted by [ x ] B . The family of elemen- 

tal granules {[ x i ] B | x i ∈ U } builds a concept system to describe an 

arbitrary subset of the sample space, where U = { x 1 , x 2 , . . . , x n } is 
a nonempty finite set of objects, called a universe. For subset X , 

two unions of elemental granules: lower approximation and upper 

approximation are defined as follow: 

B X = { [ x i ] B | [ x i ] B ⊆ X, x i ∈ U} (1) 

B X = { [ x i ] B | [ x i ] B ∩ X 6 = ∅ , x i ∈ U} (2) 

The lower approximation is the maximal union of elemental 

granules consistently contained in X , while the upper approxima- 

tion is the minimal union of elemental granules containing X . The 

difference between lower approximation and upper approxima- 

tion is called approximation boundary of X : BN(X ) = B X − B X . The 

lower approximation is also called positive region. The positive re- 

gion, negative region and the boundary region of X are shown as 

Fig. 1 . 

Classical rough sets are originally proposed to deal with cate- 

gorical data. However, in real-world applications, there are many 

integer-valued and real-valued data. Thus, some extended models 

of the classical rough set were proposed to deal with this problem. 

Fuzzy rough set [13,15,17] and neighborhood rough set [38] are 

Fig. 1. Classical rough set. 

Fig. 2. δ neighborhood rough set. 

two representative extensions of the classical rough set. Neigh- 

borhood Rough Set used neighborhood relation to replace the ap- 

proximation based on equivalence relation of the traditional rough 

set model, which supports both continuous and discrete data sets 

[19,39] . In this section, we briefly review some basic concepts and 

notations of neighborhood rough set as follows. 

An information system S = (U, A ) , where U = { x 1 , x 2 , . . . , x n } 
is a nonempty finite set of objects, called a universe. A = 

{ a 1 , a 2 , . . . , a m } is a nonempty finite set of attributes (features). 
More specifically, S = (U, A, V, f ) is called a decision table if A = 

C 
⋃ 
D, where C is a set of condition attributes and D is a set of 

decision attributes, C 
⋂ 
D = ∅ . V = 

⋃ 

a ∈ A V a , V a is a domain of at- 

tribute a. f : U ×A → V is an information function such that f ( x, 

a ) ∈ V a for every x ∈ U, a ∈ A. f ( x i , a j ) denotes the value of object x i 
on the attributes a j . 

There are mainly two types of neighborhood relations: 1) 

neighborhood relation with a fixed distance ( δ neighborhood), as 

shown in Fig. 2 ; 2) neighborhood relation with a fixed number of 

neighbors ( k -nearest neighborhood), as shown in Fig. 3 . 

Definition 1. A metric 1 is a distance function from R N ×R N → R , 

and 1( x, y ) denotes the distance between x and y . For ∀ x, y, z ∈ U , 

it satisfies: 

1) 1( x, y ) ≥0; 1(x, y ) = 0 if and only if x = y ; 

2) 1(x, y ) = 1(y, x ) 

3) 1(x, z) ≤ 1(x, y ) + 1(y, z) 

Definition 2. Given U and C , let B ⊆C be a subset of attributes, 

x ∈ U . The neighborhood δB ( x ) of arbitrary object x on the feature 
subset B is defined as: 

δB (x ) = { y | 1(x, y ) ≤ δ, y ∈ U} (3) 
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Fig. 3. k-nearest neighborhood rough set (k = 3). 

Definition 3. Considering object x and given a set of numerical at- 

tributes B to describe the object, we call the k-nearest neighbors 

of x in terms of a k-nearest neighborhood information granule, de- 

notes as k B ( x ). 

k B (x ) = { y | y ∈ Min k { Neighbors (x ) } , y ∈ U} (4) 

Where Neighbors ( x ) denotes all the neighbors of x , and 

Min k { Neighbors ( x )} denotes the k nearest neighbors calculated on 

feature subset B . 

Like classical rough set model, we give the lower and upper ap- 

proximations of neighborhood relation R as follows. 

Definition 4. Given a neighborhood approximation space ℜ N = 

(U, R ) , for ∀ X ⊆U , two subsets of objects, called lower and upper 

approximations of X in terms of R neighborhood relation, are de- 

fined as 

R (X ) = { x i ∈ U | R (x i ) ⊆ X, x i ∈ U} (5) 

R (X ) = { x i ∈ U | R (x i ) ∩ X 6 = ∅ , x i ∈ U} (6) 

The boundary region of X in the approximation space is formu- 

lated as 

BR (X ) = R (X ) − R (X ) (7) 

As shown in Fig. 2 , all the δ neighbor samples of x 1 have the 

same class label L 1 with mark “
∗” and the neighborhood samples 

of x 3 in a δ area are completely marked with “o” with another 

class label L 2 . Meanwhile, the samples in the neighborhood of x 2 
come from classes L 1 and L 2 . We define the samples of x 2 as the 

boundary objects. Meanwhile, as shown in Fig 3 , all the k-nearest 

neighbor (k = 3) samples of x 1 have the same class label L 1 and 

the neighborhood samples of x 3 have the same class label L 2 . The 

neighbors of x 2 come from classes L 1 and L 2 . In general, we need 

to find a feature subspace on which the boundary region is main- 

tained as little as possible. 

The size of the boundary region reflects the roughness degree 

of X in the approximation space. Usually, we hope that the bound- 

ary region of the decision is as little as possible for decreasing un- 

certain in the decision procedure. The lower approximation is also 

called positive region, denoted as POS ( x ). 

Definition 5. Let B ⊆C , the dependency degree of B to D is defined 

as the ratio of consistent objects: 

γB (D ) = 
CARD (P OS B (D )) 

CARD (U) 
, (8) 

where POS B ( D ) denotes the lower approximation of D on feature 

subset B . 

Thus, feature selection using neighborhood rough set aims to 

select a subset B from the feature set C that gets the maximal de- 

pendency degree of B to D . 

4. Our new online streaming feature selection approach 

In this section, we will introduce our new online streaming fea- 

ture selection approach in detail. We first give a formal definition 

of online streaming feature selection. Then we introduce our new 

non-parameter neighborhood relation and the dependency calcula- 

tion method. In terms of the new neighborhood relation and three 

evaluation criteria, we will present a new online streaming feature 

selection algorithm subsequently. 

4.1. Definition of online streaming feature selection 

Let OSF S = (U, C ∪ D, h, t) denote an online streaming feature 

selection framework, where U is a nonempty finite set of ob- 

jects, C is the condition attribute set, and D is the decision at- 

tribute set. Let C = [ x 1 , x 2 , . . . , x n ] 
T 

∈ R n ×d consist of n samples 

over a d -dimensional feature space F = [ f 1 , f 2 , . . . , f d ] 
T 

∈ R d . Let 

D = [ y 1 , y 2 , . . . , y n ] 
T 

∈ R n ×1 consist of n samples over the class la- 

bel (decision feature space) L = { l 1 , l 2 , . . . , l m } , where l i denotes the 
value of a class label. Given U, C and D , at each time stamp t , we 

get a new feature f t of C ∪ D without knowing the exact number 

of d in advance. The problem of online streaming feature selection 

for mixed data is to derive a mapping h t : x i → L ( x i ∈ C ) at each time 

stamp t , which is as good as possible using a subset of features 

that have arrived so far. 

There are three challenges for online streaming feature selec- 

tion. 1) Unlike traditional feature selection, we do not know the 

feature space before learning. Thus, we can not get any domain 

knowledge before selection. 2) Features are arriving randomly at 

each time. In order to decide whether detaining or discarding the 

new arriving features, we need to consider the new arriving fea- 

ture and the selected feature subset as integration. 3) Although 

neighborhood rough set-based data mining does not require any 

domain knowledge, it is still a challenge to specify unified parame- 

ters δ for the δ neighborhood and k for the k -nearest neighborhood 

before learning. In the next, we will introduce a new neighborhood 

relation which need not specify any parameters before learning. 

4.2. Our new neighborhood relation 

Definition 6. Let N B ( x i ) denote all of the neighbors of x i sorted by 

the distance from the nearest to the farthest on feature subset B , 

N B (x i ) = < x (i, 1) , x (i, 2) , . . . , x (i, j) , . . . , x (i,n −1) > (9) 

where { x i , x (i, 1) , x (i, 2) , . . . , x (i,n −1) } = U and 1(x i , x (i, 1) ) ≤

1(x i , x (i, 2) ) ≤ . . . ≤ 1(x i , x (i,n −1) ) . 

We define the density of x i to neighbor x ( i, k ) as 

Density (x i , x (i,k ) ) = 
1(x i ,x (i,k ) ) 

k 
, denoted as d ( k ) for short. From 

x ( i , 1) to x (i,n −1) , assuming the density value first decreases at 

neighbor x ( i, k ) , then, we call x ( i, k ) the first Inflection Point , de- 

noted as IP ( x ( i, k ) ). We use the samples between x i and the first 

Inflection Point as the nearest neighbors of x i , shown as Fig. 4 . 

Based on this, we proposed a new neighborhood relation with 

adaptive neighbors using the Inflection Point, denoted as IP C ( x ) as 

shown in Eq. (10) . 

Definition 7. Given a set of finite and nonempty objects U = 

{ x 1 , x 2 , . . . , x n } , the condition feature set C and a feature subset B 
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Fig. 4. our new neighborhood relation. 

Table 1 

An example dataset. 

x ∈ U f 1 f 2 f 3 f 4 d 

x 1 3 5.6 1 1 -1 

x 2 5 6.9 1 2 1 

x 3 8 5.3 1 1 1 

x 4 13 12.3 0 1 1 

x 5 6 15.2 0 3 -1 

x 6 5 2.6 0 2 1 

x 7 9 6.8 1 2 -1 

x 8 15 8.4 0 2 -1 

( B ⊆C ). For target object x i , let N B (x i ) = < x (i, 1) , x (i, 2) , . . . , x (i,n −1) > 

denote all the neighbors of x i from the nearest to the farthest on 

B . The adaptive neighborhood of arbitrary object x i ⊆U on B is de- 

fined as: 

IP B (x i ) = { x (i, 1) , x (i, 2) , . . . , x (i,k −1) } , (10) 

where IP ( x ( i, k ) ) is the first Inflection Point from x ( i , 1) to x (i,n −1) . 

Table 1 shows an example dataset used to illustrate the defini- 

tion of our new neighborhood relation, where x 1 to x 8 are the sam- 

ples with four condition features ( f 1 to f 4 ) and one decision feature 

( d ). The distance function is calculated using Euclidean distance. 

Let’s take object x 3 and feature set B = { f 1 , f 2 } as an ex- 
ample. First, we calculate all distances between x 3 and x i 

( i 6 = 3) on B namely: 1B (x 3 , x 1 ) = 

√ 

(8 − 3) 2 + (5 . 3 − 5 . 6) 2 = 

5 . 009 , 1B (x 3 , x 2 ) = 3 . 4 , 1B (x 3 , x 4 ) = 8 . 602 , 1B (x 3 , x 5 ) = 

10 . 1 , 1B (x 3 , x 6 ) = 4 . 036 , 1B (x 3 , x 7 ) = 1 . 803 , 1B (x 3 , x 8 ) = 7 . 655 . 

All the neighbors of x 3 from the nearest to the farthest are 

N B (x 3 ) = { x 7 , x 2 , x 6 , x 1 , x 8 , x 4 , x 5 } . 

For Density neighborhood, Density (x 3 , x 7 ) = 
1(x 3 ,x 7 ) 

1 = 1 . 803 , 

Density (x 3 , x 2 ) = 1 . 7 . Thus, x 2 is the first Inflection Point and the 

Density neighborhood of x 3 is IP B (x 3 ) = { x 7 } . 
Based on this new density neighborhood relation, we proposed 

the new dependency calculation method as follows. 

In Algorithm 1, we calculate the CARD value of each instance x i 
and get the sum for the final dependency degree. The CARD value 

ranges from 0 to 1, denoted as the consistency of x i ’s class attribute 

with its neighbors’ class attributes. In order to find the neighbors 

of x i , we need to sort all neighbors of x i by the distance. The time 

complexity of quicksort function is O ( n ∗logn ). Thus, the time com- 

plexity of Dependency-Mixed is O (| X S | 
2 ∗log | X S |). 

4.3. Our new algorithm 

For online streaming feature selection, features flow in one by 

one over time. At time stamp t , we have the new arriving feature 

f t and the selected candidate subset S t−1 . The aim of our new al- 

gorithm is to select features from S t−1 ∪ f t with high correlation, 

high dependency, and low redundancy. 

4.3.1. High correlation 

For high correlation, it means the features selected in S t at time 

stamp t should be maximal correlated to the decision attributes. 

For each feature f i , we can calculate the dependency γ f i 
(D ) with 

Eq. (8) . Thus, in order to get the high correlation, we should maxi- 

mize the mean value of all dependency values between individual 

feature f i and target class label D : 

Max { R (S, D ) } , R = 
1 

| S t | 

∑ 

f i ∈ S t 

γ f i (D ) . (11) 

For the new arriving features f t at time stamp t , we calculate 

γ f t 
(D ) and compare it with R (S t−1 , D ) . If γ f t 

(D ) < R (S t−1 , D ) , f t 
will be discarded. 

Theorem 1. Suppose at time stamp t − 1 , the selected feature set 

is S t−1 . At time stamp t, the new arriving feature is f t . If γ f t 
(D ) < 

R (S t−1 , D ) and we add f t into S t−1 , then R (S t , D ) < R (S t−1 , D ) . 

Proof. Let | S t−1 | = N t−1 and R (S t−1 , D ) = r t−1 . It is obvious that 
∑ 

f i ∈ S t−1 
γ f i 

(D ) = r t−1 × N t−1 . For γ f t 
(D ) < R (S t−1 , D ) . If we add f t 

into S , then S t = S t−1 ∪ f j and | S t | = N t−1 + 1 . 

R (S t , D ) = 
1 

| S t | 

∑ 

f i ∈ S t 
γ f i (D ) 

= 
1 

N t−1 +1 
(N t−1 × r t−1 + γ f j (D )) 

= 
N t−1 

N t−1 +1 
r t−1 + 

1 
N t−1 +1 

γ f j (D ) 

= r t−1 + 
1 

N t−1 +1 
(γ f j (D ) − r t−1 ) . 

∵ γ f t (D ) < R (S t−1 , D ) , ∴ γ f j (D ) − r t−1 < 0 , ∴ R (S t , D ) < R (S t−1 , D ) . 

¤

4.3.2. High dependency 

For neighborhood rough set based feature selection, the final 

goal is to get a subset from feature space which can achieve the 

maximal dependency according to Eq. (8) . In other words, at each 

time stamp t , for the selected candidate subset S t , we should make 

sure that 

Max { D (S t , D ) } , D = γS t (D ) . (12) 

For the new arriving features f t at time stamp t , if γS t−1 ∪ f t (D ) ≥

γS t (D ) , we should add f t into S t−1 . Otherwise, we will discard f t . 

Theorem 2. [40] Suppose B is a subset of conditional features, f is an 

arbitrary conditional attribute that belongs to the dataset, and D is 

the set of decision attributes. Then γ ( B ∪ f, D ) ≥γ ( B, D ) . 

Proof. The proof of this theorem is available in [40] page 90. ¤

With Theorem 2 , we can find that, if we only use high depen- 

dency and high correlation for feature selection, there will be a 

lot of redundant features in the candidate subset ( γS t−1 ∪ f t (D ) == 

γS t (D ) ). Thus, we need to consider the redundancy of the selected 

subset. 

4.3.3. Low redundancy 

In order to measure each feature’s importance in the selected 

candidate subset, we need to define the significance of single fea- 

ture to its feature set. The significance of a feature f to feature set 

B ( f ∈ B ) is defined as follows: 

Definition 8. Given a condition attribute set B ( B ⊆C ) and a deci- 

sion attribute set D , a feature f ∈ B , the significance of the feature f 

to B is defined as: 

σB ( f, B ) = γB (D ) − γ{ B − f } (D ) (13) 
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In order to select the features with low redundancy, we should 

make the mean significance of each feature f i in S achieve the max- 

imal. That is 

Max { S (S t , D ) } , S = 
1 

| S t | 

∑ 

f i ∈ S t 

{ σS t ( f i , D ) } . (14) 

With the high dependency constraint and Theorem 2 , we can 

see that ∀ f i ∈ S t , σS t ( f i , D ) ≥ 0 is satisfied. Thus, we should discard 

the features in S which satisfy the constraint σS t ( f i , D ) = 0 . 

However, in real data sets, we find it rare that the dependency 

of S ∪ f i is exactly equal to the dependency of S . Thus, we relax 

the exactly equal restriction and change it to an interval restriction. 

That is, if 
∣

∣

∣

Dep S − γS∪ f i 

Dep S 

∣

∣

∣
≤ λ, (15) 

then we will execute the redundancy analysis. With this new fuzzy 

equal constraint, more candidate features will be considered into 

the redundancy analysis step and this will make the final selected 

feature subset lower redundancy. The default value of λ is 0.05, 

more details refer to Section 5.2 . 

To sum up, we propose our new online streaming feature selec- 

tion algorithm as Algorithm 2 . 

Algorithm 1 Dependency-Density . 

Require: ~~

X S : sample values on feature set S; 

R : density neighborhood relation; 

Ensure: ~~

dep S : dependency on feature set S; 

1: card S : the number of positive samples on S, initialized to 0; 

2: card U : the number of instances of X S ; 

3: FOR each x i in X S 
4: find the neighbor samples of x i on R as S R (x i ) ; 

5: calculate the card value of x i as Card(S R (x i )) ; 

6: card S = card S + Card(S R (x i )) ; 

7: END FOR 

8: dep S = card S /card U ; 

9: return dep S ; 

More specifically, if a new feature f i arrives at time stamp t i , 

Step 7 calculates the dependency of f i using the dependency calcu- 

lation method Dependency-Density . Step 8 compares the depen- 

dency of f i with the mean dependency of the selected feature set 

S . If γ f i 
is smaller than Mean Dep S , f i is discarded. Step 11 compares 

the dependency of current feature set S with the dependency of 

the feature set S ∪ f i . If the dependency of S ∪ f i is bigger than Dep S , 

which means adding new feature f i will increase the dependency 

of the selected feature set, then we add f i into S . Otherwise, if the 

ratio of the difference between the dependency of S ∪ f i and Dep S 
with Dep S is less than a fixed value λ, we will analyse the feature 
redundancy. For each feature in S ∪ f i , we randomly select a fea- 

ture from the candidate feature set and calculate its significance 

according to Eq. (14) . We will discard features whose significance 

equal to 0. In sum, with this new online streaming feature selec- 

tion algorithm, we can select features with high correlation, high 

dependency, and low redundancy. 

4.4. Time complexity of OFS-Density 

The time complexity of OFS-Density mainly depends on the de- 

pendency function Dependency-Density . 

Suppose the data set is D , the number of instances in D is N 

and the number of features in D is F . According to Section 4.2 , 

the time complexity of Dependency-Density is O ( N 2 logN ). At time 

Algorithm 2 OFS-Density. 

Require: ~~

X: the data samples with condition features; 

Y : the decision classes; 

Ensure: ~~

S: the selected feature set; 

1: S: the selected feature set, initialized to {}; 

2: λ: the parameter control the fuzzy equal constraint(default 
value 0.05); 

3: Dep S :the dependency of S to Y , initialized to 0; 

4: Mean Dep S : the mean dependency of features in S, initialized to 

0; 

5: Repeat 

6: Get a new feature f i of X at time stamp t i as X f i ; 

7: Calculate the dependency of X f i as γ f i 
using Dependency- 

Density ; 

8: IF γ f i 
< Mean Dep S 

9: Discard feature f i and go to Step 24; 

10: END IF 

11: IF γS∪ f i > Dep S 
12: S = S ∪ f i ; 

13: Dep S = γS , Mean Dep S = 
1 
| S| 

∑ 

f i ∈ S 
γ f i 

(Y ) ; 

14: ELSE IF | (Dep S − γS∪ f i ) /Dep S | < = λ
15: S = S ∪ f i ; 

16: FOR each feature in S

17: Randomly select a feature f ′ in S; 

18: Calculate f ′ ’s significance as σS ( f 
′ ) ; 

19: IF σS ( f 
′ ) == 0 

20: Remove feature f ′ from S; 

21: END IF 

22: END FOR 

23: END IF 

24: Until no more features are available; 

25: return S; 

stamp t i , a new feature f i is presented to the algorithm. Steps 6–

8 calculate the dependency of f i and compare it with Mean Dep S 
(the mean dependency value of each feature in selected feature 

set S ). The time complexity is O ( N 2 logN ). If the dependency of f i 
is smaller than Mean Dep S , f i will be discarded. Otherwise, we cal- 

culate the dependency of S ∪ f i and compare it with Dep S (the de- 

pendency of currently selected feature set). This time complexity is 

also O ( N 2 logN ). If the dependency of S ∪ f i is bigger than Dep S , we 

add f i into S and go on to the next feature. If the dependency of 

S ∪ f i is equal to or little smaller than Dep S , we will calculate each 

features’ significance and remove the redundant features from S . 

The time complexity of this phase is O (| S | ∗N 2 logN ). 

Thus, the worst time complexity of OFS-Density is 

O ( F 2 ∗N 2 logN ). 

5. Experimental 

5.1. Experiment setup 

In this section, we apply the proposed online feature selec- 

tion algorithm on fourteen data sets, including four UCI data sets 

(WDBC, HILL VALLEY, IONOSPHERE,SONAR), nine DNA microarray 

data sets (PROSTATE-std, COLON, LYMPHOMA-std, DLBCL, GLIOMA, 

SRBCT-std, LUNG2, LEUKEMIA-std, MLL) [41,42] and one NIPS 2003 

data set (ARCENE) [6] as shown in Table 2 . 

In our experiments, we use three basic classifiers, KNN, SVM, 

and CART in Matlab R2015b to evaluate a selected feature subset. 

We perform 10-fold cross-validation on each data set. Feature se- 

lection is training on 9/10 data samples and testing on the rest 
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Table 2 

Experimental data sets. 

Data set Instances Features Classes 

IONOSPHERE 351 34 2 

WDBC 569 30 2 

SONAR 208 60 2 

HILL 606 100 2 

COLON 62 20 0 0 2 

SRBCT 63 2308 4 

LUNG2 203 3312 5 

LYMPHOMA 62 4026 3 

GLIOMA 50 4433 4 

MLL 72 5848 3 

PROSTATE 102 6033 2 

DLBCL 77 6285 2 

LEU 72 7129 2 

ARCENE 200 10 0 0 0 2 

Fig. 5. Predictive accuracy in KNN varying with four different values of λ . 

1/10 data. All competing algorithms use the same training and 

testing data for each fold. All experimental results are conducted 

on a PC with Intel(R) i5-3470S, 2.9 GHz CPU, and 8GB memory. 

To validate whether OFS-Density and its rivals have significant 

differences in the predictive accuracy, we conduct the Friedman 

test at a 95% significance level [43] , under the null-hypothesis. The 

performance of OFS-Density and its rivals has no significant differ- 

ence if the null-hypothesis is accepted. When the null-hypothesis 

at the Friedman test is rejected, we continuously proceed with the 

Nemenyi test [43] as a post-hoc test. With the Nemenyi test, the 

performance of those two methods is significantly different if the 

corresponding average rankings differ by at least the critical differ- 

ence (how to calculate the critical difference, please see [43] ). 

5.2. Analysis of λ in OFS-Density 

In this subsection, we will analyse the influence of λ in OFS- 

Density. We select three values (0.01, 0.05 and 0.1) of λ and the 

exactly equal constraint ( λ = 0 ) as compared ones. 

Figs. 5–7 show the experimental results of our new algorithm 

with four different λ values (0, 0.01, 0.05 and 0.1) on these 

data sets (the data sets from 1 to 14 are IONOSPHERE, WDBC, 

SONAR, HILL, COLON, SRBCT, LUNG2, LYMPHOMA , GLIOMA , MLL, 

PROSTATE, DLBCL, LEU, ARCENE). Figs. 8 and 9 show the mean 

number of selected features and running time on these data sets. 

In these experiments, we select KNN, SVM, and CART as the basic 

classifiers, and the value of k in KNN is set to 1. 

Fig. 6. Predictive accuracy in SVM varying with four different values of λ . 

Fig. 7. Predictive accuracy in CART varying with four different values of λ . 

Fig. 8. Running Time varying with four different values of λ . 
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Fig. 9. The mean number of selected features on four different values of λ . 

Table 3 

The mean values of different λ on predictive accuracy, running time 

and number of selected features. 

λ = 0 λ = 0 . 01 λ = 0 . 05 λ = 0 . 1 

KNN classifer 0.8213 0.8215 0.8467 0.8433 

SVM classifer 0.8321 0.8272 0.8411 0.8405 

CART classifer 0.7942 0.7950 0.7982 0.8029 

Running time 4.1152 4.1929 5.6289 25.3083 

Selected features 16.5785 7.3571 11.7785 26.1428 

Table 4 

P -values of λ = 0 VS. λ = 0 . 01 , 0 . 05 , 0 . 1 . 

λ = 0 λ = 0 . 01 λ = 0 . 05 λ = 0 . 1 

KNN classifer – 0.5930 0.2482 0.7815 

SVM classifer – 0.7815 0.0833 0.5930 

CART classifer – 0.5930 0.4054 0.4054 

Running time – 0.5930 0.0075 0.0075 

Selected features – 0.0 0 02 0.0075 0.1088 

In Fig. 8 , the running time of λ = 0 . 1 is 308.956. In Fig. 9 , the 

number of selected features of λ = 0 . 1 is 223.9. Table 3 shows the 

mean value of predictive accuracy, running time and number of 

selected features with different values of λ. 
Besides, with the Friedman test, the p -values of λ = 0 (exactly 

equal) vs. λ = 0 . 01 , 0 . 05 , 0 . 1 on predictive accuracy, running time 

and number of selected features can be seen in Table 4 . 

From Figs. 5–9 and Tables 3 and 4 , we have the following ob- 

servations. 

• There is no significant difference in predictive accuracy with 

different values of λ. λ = 0 . 05 gets the best performance with 

KNN and SVM classifiers and λ = 0 . 1 gets the highest mean 

predictive accuracy with CART classifier. 
• With the increasing of values of λ, the corresponding running 
time increases rapidly. This is because a bigger λ value means 

more times to run the feature redundancy analysis. 
• On the number of selected features, λ = 0 selects more fea- 

tures than λ = 0 . 01 and λ = 0 . 05 . This indicates that the exactly 

equal constraint can lead to some redundant features. However, 

λ = 0 . 1 selects the maximum number of features and consumes 

the maximum running time. Thus, bigger values of λ do not 

mean a better performance. 

In sum, relaxing the exactly equal restriction can remove re- 

dundant features and get a promotion on the predictive accuracy. 

However, the λ value is not the bigger the better. In the next ex- 

periments, we will use λ = 0 . 05 for the OFS-Density algorithm. 

Fig. 10. Predictive accuracy using KNN on different feature stream orders. 

Fig. 11. predictive accuracy using SVM on different feature stream orders. 

5.3. Influence of feature stream order 

In this subsection, we will validate the influence of feature 

stream order on our new neighborhood relation and new online 

streaming feature selection algorithm. We compare three types of 

feature stream orders: original, inverse and random. 

Figs. 10–12 show the experimental results of our new algo- 

rithm with three different f eature stream orders on these data sets. 

Figs. 13 and 14 show the mean number of selected features and 

running time on these data sets. In these experiments, we select 

KNN, SVM, and CART as the basic classifiers and the value of k in 

KNN is set to 1. 

The p-values of original vs. inverse and random on predictive 

accuracy, running time and number of selected features can be 

seen in Table 5 . 

From Figs. 10–14 , we can see that there are minor fluctuations 

on predictive accuracy, running time and number of selected fea- 

tures varying with different feature stream orders. From Table 5 , 

we can see that there is no significant difference among these 

three orders on predictive accuracy, running time and number of 

selected features, except in the cases of original vs. inverse with 

SVM classifier. The main reason is that SVM classifier is robust and 

the predictive accuracy basically increases with the number of se- 
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Fig. 12. Predictive accuracy using CART on different feature stream orders. 

Fig. 13. Running time varying with different feature stream orders. 

Fig. 14. The mean number of selected features on different feature stream orders. 

Table 5 

The p -values of original VS. inverse and random. 

Original Inverse Random 

KNN classifer – 0.5637 0.5271 

SVM classifer – 0.0039 0.1317 

CART classifer – 0.7815 0.5930 

Running time – 1.0 0 0 0 0.2850 

Selected features – 0.2850 0.5930 

lected features. Meanwhile, our new method selects few features 

and this makes the predictive performance with SVM is unstable. 

In sum, the feature stream order has little influence on our new 

online streaming feature selection method. 

5.4. OFS-Density vs. traditional feature selection methods 

In this subsection, we compare OFS-Density with eight rep- 

resentative traditional feature selection methods, including Fisher 

Score [27] , ReliefF [28] , PCC (Pearson Correlation Coefficient) [44] , 

Laplacian Score [31] , MI (mutual information) [29] , INF [32] , LLC-FS 

[33] and FSV [30] . 

All these algorithms are implemented in MATLAB [45] . The K 

value of ReliefF is set to 5 for the best performance. None of these 

eight traditional feature selection methods can handle the scenario 

of feature streaming in an online manner. Thus, we rank all the 

features evaluated by these traditional feature selection methods 

from high to low and select the same number of features as OFS- 

Density. We evaluate OFS-Density and all competing ones on the 

predictive accuracy with 10-fold cross-validation. 

Tables 6–8 summarize the predictive accuracy of OFS-Density 

against the other eight competing algorithms using the basic clas- 

sifiers of KNN (k = 1), SVM and CART. The p -values of Fried- 

man test on KNN, SVM and CART are 2.9390e −10, 1.2618e −07, and 

2.7607e −07. Thus, there is a significant difference between OFS- 

Density and other eight competing algorithms respectively on pre- 

dictive accuracy. According to the Nemenyi test, the value of CD 

(critical difference) is 3.2132. 

From Tables 6–8 , we have the following observations. 

• OFS-Density vs. Fisher. According to the values of average rank- 

ings and CD, there is no significant difference between OFS- 

Density and Fisher on predictive accuracy with these three 

classifiers. OFS-Density outperforms Fisher on ten of fourteen 

datasets in cases with KNN, SVM, and CART. This is because 

Fisher measures the features independently, and it can not con- 

sider the information of the selected feature set as an integral. 

In total, OFS-Density performs better than Fisher. 
• OFS-Density vs. PCC. There is a significant difference between 

OFS-Density and PCC in predictive accuracy with KNN, and 

there is no significant difference between them with CART 

and SVM. OFS-A3M outperforms PCC on eleven of the four- 

teen datasets. For some data sets, such as SRBCT, DLBCL, and 

ARCENE, OFS-Density is higher PCC over 20% on predictive ac- 

curacy. PCC can not handle some datasets well. OFS-Density is 

superior to PPC. 
• OFS-Density vs. ReliefF. There is no significant difference in pre- 

dictive accuracy between OFS-A3M and ReliefF with KNN, SVM, 

and CART. OFS-Density gets the higher predictive accuracy than 

ReliefF on twelve of the fourteen datasets. ReliefF also uses the 

neighbors’ information for feature selection. However, ReliefF 

does not discriminate redundant features which makes it per- 

formance bad on some data sets, such as GLIOMA. 
• OFS-Density vs. MI. There is a significant difference between 

OFS-Density and MI with these three classifiers. OFS-A3M out- 

performs MI on thirteen of the fourteen datasets at least. The 
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Table 6 

Predictive accuracy using the KNN classifier. 

Data set OFS-Density Fisher PCC ReliefF MI Laplacian INF LLC-FS FSV 

IONOSPHERE 0.8943 0.88 0.8743 0.8229 0.7943 0.8343 0.8171 0.8543 0.7943 

WDBC 0.9385 0.9332 0.9332 0.8962 0.9016 0.9244 0.9367 0.9086 0.9016 

SONAR 0.6827 0.7108 0.7108 0.6779 0.5479 0.5955 0.6955 0.6684 0.5479 

HILL 0.595 0.5314 0.5314 0.557 0.5545 0.4967 0.5033 0.5479 0.5545 

COLON 0.75 0.7333 0.7333 0.7167 0.5167 0.5167 0.5667 0.6167 0.5167 

SRBCT 0.8833 0.8833 0.5833 0.8667 0.6333 0.3167 0.2667 0.3833 0.6333 

LUNG2 0.93 0.79 0.815 0.8 0.745 0.765 0.81 0.79 0.835 

LYMPHOMA 1 0.9833 0.95 0.9667 0.7833 0.9333 0.6 0.95 0.7833 

GLIOMA 0.68 0.64 0.66 0.26 0.56 0.42 0.4 0.48 0.62 

MLL 0.9286 0.9 0.7857 0.9286 0.6429 0.8429 0.9143 0.8714 0.8286 

PROSTATE 0.93 0.91 0.91 0.91 0.63 0.59 0.48 0.72 0.63 

DLBCL 0.95 0.7925 0.4425 0.8125 0.605 0.685 0.7375 0.7625 0.7875 

LEUKEMIA 0.9571 0.8714 0.8714 0.8429 0.6 0.5857 0.4714 0.4714 0.6 

ARCENE 0.86 0.655 0.615 0.675 0.585 0.7 0.715 0.655 0.69 

AVG. ACCURACY 0.8556 0.8010 0.7439 0.7666 0.6499 0.6575 0.6367 0.6913 0.6944 

AVG. RANKS 8.7143 6.5714 5.50 0 0 5.6071 2.8571 3.2857 3.9643 4.2857 4.2143 

Table 7 

Predictive accuracy using the SVM calssifier. 

Data set OFS-Density Fisher PCC ReliefF MI Laplacian INF LLC-FS FSV 

IONOSPHERE 0.8143 0.8571 0.8343 0.6914 0.84 0.6971 0.6686 0.7771 0.84 

WDBC 0.9614 0.9526 0.9526 0.9209 0.9244 0.9297 0.9526 0.9437 0.9244 

SONAR 0.7504 0.7361 0.7361 0.7008 0.5674 0.6165 0.6456 0.6476 0.5674 

HILL 0.5339 0.5074 0.5074 0.5207 0.5074 0.5099 0.5058 0.5149 0.5074 

COLON 0.8167 0.85 0.85 0.8667 0.65 0.7 0.6833 0.7167 0.65 

SRBCT 0.8 0.8833 0.6667 0.75 0.6833 0.3833 0.3667 0.3 0.6833 

LUNG2 0.935 0.845 0.84 0.85 0.85 0.82 0.865 0.86 0.85 

LYMPHOMA 0.9833 0.9333 0.9 0.9167 0.6833 0.9 0.65 0.9167 0.6833 

GLIOMA 0.6 0.58 0.6 0.28 0.6 0.46 0.48 0.42 0.48 

MLL 0.9286 0.9429 0.9 0.9429 0.7 0.9143 0.9429 0.8857 0.9 

PROSTATE 0.94 0.92 0.92 0.94 0.59 0.6 0.47 0.73 0.59 

DLBCL 0.975 0.8625 0.7875 0.825 0.6925 0.71 0.685 0.7625 0.8 

LEUKEMIA 0.9429 0.9 0.9 0.8857 0.6143 0.6429 0.5857 0.6 0.6143 

ARCENE 0.805 0.725 0.625 0.65 0.575 0.635 0.67 0.66 0.725 

AVG. ACCURACY 0.8418 0.8210 0.7871 0.7672 0.6769 0.6799 0.6550 0.6953 0.7010 

AVG. RANKS 8.1071 7.0 0 0 0 5.3214 5.6429 3.3929 3.6786 3.4643 4.3214 4.0714 

Table 8 

Predictive accuracy using the CART calssifier. 

Data set OFS-Density Fisher PCC ReliefF MI Laplacian INF LLC-FS FSV 

IONOSPHERE 0.9114 0.8829 0.86 0.7943 0.8371 0.8314 0.8029 0.8114 0.8371 

WDBC 0.9262 0.9227 0.9227 0.891 0.9158 0.9209 0.9245 0.9121 0.9158 

SONAR 0.6965 0.7261 0.7261 0.5807 0.514 0.5331 0.6436 0.5875 0.514 

HILL 0.5926 0.5107 0.5107 0.5248 0.5091 0.4983 0.4835 0.5124 0.5091 

COLON 0.7833 0.7833 0.7833 0.7667 0.6333 0.5333 0.6167 0.6667 0.6333 

SRBCT 0.75 0.9167 0.65 0.8167 0.7 0.3 0.25 0.3167 0.7 

LUNG2 0.83 0.795 0.785 0.82 0.715 0.82 0.8 0.82 0.8 

LYMPHOMA 0.9667 0.85 0.8833 0.85 0.65 0.8833 0.7 0.9 0.65 

GLIOMA 0.52 0.62 0.62 0.34 0.4 0.48 0.38 0.5 0.48 

MLL 0.8571 0.8143 0.8571 0.8571 0.6 0.8286 0.8571 0.7714 0.8714 

PROSTATE 0.89 0.91 0.91 0.93 0.65 0.59 0.48 0.65 0.65 

DLBCL 0.9125 0.825 0.8125 0.7875 0.68 0.7225 0.6475 0.725 0.8 

LEUKEMIA 0.8714 0.9286 0.9286 0.8429 0.5429 0.6714 0.6 0.5 0.5429 

ARCENE 0.805 0.65 0.585 0.645 0.595 0.68 0.66 0.66 0.715 

AVG. ACCURACY 0.8080 0.7953 0.7738 0.7461 0.6387 0.6637 0.6318 0.6666 0.6870 

AVG. RANKS 7.9643 6.6071 6.2143 5.0 0 0 0 2.8571 4.0 0 0 0 3.3929 4.4643 4.50 0 0 

features are evaluated independently with MI which makes it 

performance inferior to OFS-Density. 
• OFS-Density vs. Laplacian Score. There is a significant difference 

between OFS-Density and Laplacian in predictive accuracy with 

these three classifiers. OFS-Density outperforms Laplacian Score 

on all of these datasets. As an unsupervised method, Laplacian 

Score does not use the class information for feature selection. 

In general, Laplacian Score performance inferior to OFS-Density. 
• OFS-Density vs. INF. INF gets the lowest mean predictive ac- 

curacy and there is a significant difference between OFS- 

Density and INF with these three classifiers. OFS-Density out- 

performs INF on thirteen of the fourteen datasets. On some 

data sets, such as SRBCT, LYMPHOMA , GLIOMA , PROSTATE, and 

LEUKEMIA, INF performs badly. INF is an unsupervised method 

and the performance is inferior to OFS-Density. 
• OFS-Density vs. LLC-FS. There is a significant difference be- 

tween OFS-Density and LLC-FS with these three classifiers. 

Meanwhile, OFS-Density performs better than LLC-FS on all 

these data sets. 
• OFS-Density vs. FSV. There is a significant difference between 

OFS-Density and FSV in predictive accuracy. Although FSV is a 

wrapper method, OFS-Density performs better than FSV on thir- 
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Table 9 

Predictive accuracy using KNN as the base classifier. 

Data set OFS-Density Grafting α-investing OSFS Fast-OSFS SAOLA OS-SA OFS-A3M 

IONOSPHERE 0.9057 0.8714 0.9 0.8686 0.8743 0.8714 0 0.8571 

WDBC 0.9403 0.9403 0.9561 0.9614 0.9632 0.9104 0.186 0.9561 

SONAR 0.6759 0.8599 0.7817 0.7256 0.7093 0.6293 0.7632 0.8308 

HILL 0.5686 0.5397 0.638 0 0 0 0 0.6182 

COLON 0.85 0.7167 0.4667 0.6667 0.75 0.8333 0.6333 0.8 

SRBCT 0.8833 0.7167 0.5667 0.7167 0.7333 0.7667 0.6833 0.85 

LUNG2 0.925 0.92 0.825 0.79 0.83 0.88 0 0.9 

LYMPHOMA 0.9833 0.8833 0.7333 0.9333 0.9167 0.9667 0.9333 0.9 

GLIOMA 0.56 0.5 0.46 0.54 0.54 0.66 0 0.76 

MLL 0.9 0.9714 0.9571 0.7714 0.8143 0.9429 0 0.9286 

PROSTATE 0.94 0.7 0.77 0.85 0.84 0.88 0.76 0.78 

DLBCL 0.875 0.925 0.825 0.775 0.9375 0.925 0 0.8125 

LEUKEMIA 0.9143 0.7 0.6 0.8857 0.9143 0.9143 0.8 0.8571 

ARCENE 0.865 0.595 0.675 0.62 0.705 0.63 0 0.765 

AVG. ACCURACY 0.8418 0.7742 0.7253 0.7217 0.7519 0.7721 0.3399 0.8296 

AVG. RNAKS 6.3929 4.2857 3.8929 3.7857 5.0714 5.1786 2.0714 5.3214 

Table 10 

Predictive accuracy using SVM as the base classifier. 

Data set OFS-Density Grafting α-investing OSFS Fast-OSFS SAOLA OS-SA OFS-A3M 

IONOSPHERE 0.8229 0.8686 0.8657 0.8714 0.8771 0.8686 0 0.7771 

WDBC 0.9614 0.9631 0.9737 0.9649 0.9631 0.9139 0.1912 0.9684 

SONAR 0.7637 0.7398 0.7336 0.7546 0.7531 0.7236 0.7388 0.714 

HILL 0.5364 0.5124 0.5554 0 0 0 0 0.538 

COLON 0.8833 0.65 0.65 0.7833 0.7667 0.8667 0.6333 0.8333 

SRBCT 0.8 0.7333 0.3667 0.7 0.7 0.8167 0.7167 0.9167 

LUNG2 0.915 0.94 0.9 0.865 0.89 0.9 0 0.915 

LYMPHOMA 1 0.8667 0.7667 0.9667 0.9 0.9667 0.9333 0.8667 

GLIOMA 0.68 0.64 0.44 0.58 0.6 0.62 0 0.7 

MLL 0.8857 0.9714 0.9857 0.8429 0.8571 0.9 0 0.9143 

PROSTATE 0.96 0.66 0.84 0.9 0.91 0.87 0.86 0.78 

DLBCL 0.8875 0.9375 0.855 0.85 0.925 0.925 0 0.85 

LEUKEMIA 0.9143 0.6714 0.6857 0.9 0.9714 0.9429 0.8714 0.9 

ARCENE 0.82 0.68 0.76 0.65 0.695 0.625 0 0.75 

AVG. ACCURACY 0.8450 0.7738 0.7413 0.7592 0.7720 0.7813 0.3531 0.8159 

AVG. RANKS 6.1786 4.6429 4.1429 4.2500 4.8571 4.8214 2.1786 4.9286 

teen of the fourteen datasets. Thus, OFS-Density is superior to 

FSV. 

In sum, OFS-Density provides best overall performance on these 

data sets with the same number of selected features and gets the 

highest mean predictive accuracy and ranks with KNN, SVM, and 

CART. 

5.5. OFS-Density vs. online streaming feature selection methods 

In this subsection, we compare our algorithm with seven state- 

of-the-art online feature selection methods: Grafting [4] , Alpha- 

investing [5] , OSFS [6] , Fast-OSFS [6] , SAOLA [3] , OS-NRRSARA-SA 

[9] and OFS-A3M [10] . 

All aforementioned algorithms are implemented in MATLAB 

[46] . For we cannot get the source code of OS-NRRSARA-SA, we 

implemented it by ourselves. The significance level α is set to 0.01 

for OSFS, Fast-OSFS, and SAOLA. For Grafting, the parameter λ is 

set to 0.5. For Alpha-investing, the parameters are set to the values 

used in [5] . For OS-NRRSARA-SA, it can not deal with real-valued 

data directly. In order to convert real-valued data to discrete value 

data, we used the method proposed by Guyon and Elisseeff [2] . 

Tables 9–11 summarize the predictive accuracy of OFS-Density 

against the other seven algorithms using the KNN (k = 1), SVM 

and CART classifiers. Tables 12 and 13 show the running time and 

the number of selected features of OFS-Density against other algo- 

rithms. If the algorithm selects all the features in data sets or se- 

lects none of the features, we set the predictive accuracy and the 

number of selected features to 0. The p -values of Friedman test on 

KNN, SVM, CART, running time and number of selected features are 

1.3499e −04, 0.0056, 0.0179, 1.3351e −28 and 3.8769e −14 respec- 

tively. Thus, there is a significant difference between OFS-Density 

and other seven competing algorithms respectively on predictive 

accuracy, running time and number of selected features. According 

to the Nemenyi test, the value of CD (critical difference) is 2.8085. 

From Tables 9–13 , we have the following observations. 

• OFS-Density vs. Grafting. With the Friedman test and Nemenyi 

test, there is no significant difference between OFS-Density and 

Grafting on predictive accuracy with KNN, SVM, and CART, but 

there is a significant difference on the number of selected fea- 

tures. OFS-Density outperforms Grafting on nine of the fourteen 

datasets at least in predictive accuracy, while Grafting selects 

the most number of features among all these compared meth- 

ods. Thus, there must a lot of redundant features in the selected 

feature subset with Grafting. Meanwhile, OFS-Density is faster 

than Grafting. 
• OFS-Density vs. Alpha-investing. Alpha-investing is the fastest 

algorithm among all these compared algorithms. There is no 

significant difference between OFS-Density and Alpha-investing 

on predictive accuracy with KNN, SVM, and CART. OFS-Density 

outperforms Alpha-investing on ten of the fourteen datasets at 

least. In the same time, the features selected by Alpha-investing 

cannot fit for some datasets well. For instance, Alpha-investing 

only gets the predictive accuracy of around 0.3 and 0.4 on 

dataset SRBCT with KNN and SVM respectively. For some data 

sets, such as COLON, SRBCT, and LEUKEMIA, Alpha-investing 

only selects one or two features. The reason is that these data 
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Table 11 

Predictive accuracy using CART as the base classifier. 

Data set OFS-Density Grafting α-investing OSFS Fast-OSFS SAOLA OS-SA OFS-A3M 

IONOSPHERE 0.8971 0.8886 0.8743 0.8743 0.8829 0.8829 0 0.8457 

WDBC 0.9209 0.9263 0.9227 0.9403 0.9368 0.891 0.1737 0.9174 

SONAR 0.6722 0.7113 0.7336 0.6351 0.6802 0.6817 0.7446 0.7504 

HILL 0.5901 0.5066 0.5884 0 0 0 0 0.5992 

COLON 0.7333 0.65 0.5333 0.7167 0.7667 0.8333 0.6667 0.7167 

SRBCT 0.8167 0.5667 0.6333 0.7167 0.7333 0.8833 0.7 0.7833 

LUNG2 0.855 0.915 0.81 0.78 0.795 0.83 0 0.815 

LYMPHOMA 0.85 0.7833 0.7667 0.8667 0.8667 0.85 0.95 0.8833 

GLIOMA 0.54 0.56 0.4 0.6 0.5 0.62 0 0.58 

MLL 0.9143 0.8286 0.7429 0.7714 0.9 0.8571 0 0.7857 

PROSTATE 0.9 0.78 0.84 0.89 0.85 0.83 0.82 0.76 

DLBCL 0.8 0.6925 0.775 0.7975 0.81 0.8 0 0.825 

LEUKEMIA 0.8857 0.7857 0.5714 0.9143 0.8714 0.8714 0.8571 0.8429 

ARCENE 0.7 0.69 0.76 0.615 0.72 0.655 0 0.7 

AVG. ACCURACY 0.7910 0.7346 0.7108 0.7227 0.7366 0.7489 0.3508 0.7717 

AVG. RANKS 5.8929 4.0 0 0 0 3.5357 4.4286 5.2857 5.1071 2.6786 5.0714 

Table 12 

Running time (seconds). 

Data set OFS-Density Grafting α-investing OSFS Fast-OSFS SAOLA OS-SA OFS-A3M 

IONOSPHERE 0.3373 0.2074 0.0021 0.1265 0.0162 0.0117 0.162 0.0117 

WDBC 0.6073 3.6651 0.0036 0.1225 0.0584 0.0136 0.3312 0.0136 

SONAR 0.1874 0.4152 0.0037 0.0503 0.0216 0.0159 3.2413 0.0159 

HILL 10.8671 33.1627 0.0109 0.015 0.0149 0.0153 0.5784 0.0153 

COLON 0.9031 4.1893 0.0716 0.4131 0.2945 0.3117 35.7356 0.3117 

SRBCT 1.0019 7.5742 0.0912 1.8171 0.5312 0.8129 87.2487 0.8129 

LUNG2 9.6493 10.607 0.6714 62.784 3.3015 2.172 47.6706 2.172 

LYMPHOMA 3.4191 6.0938 0.2181 10.2915 2.0148 4.4564 68.2504 4.4564 

GLIOMA 1.8031 2.9393 0.2362 5.0781 1.3078 2.3033 17.4906 2.3033 

MLL 3.102 2.0967 0.4509 12.4407 2.0482 4.9122 39.708 4.9122 

PROSTATE 4.51 9.8044 0.3489 2.4136 1.14 4 4 1.4457 186.6152 1.4457 

DLBCL 3.7305 2.6564 0.4503 3.0092 1.204 1.5468 52.3555 1.5468 

LEUKEMIA 3.801 7.9587 0.4426 4.2189 1.3923 1.9461 121.5487 1.9461 

ARCENE 36.2364 70.4346 0.9856 9.0093 2.0664 3.049 446.1125 3.049 

AVG. ACCURACY 5.7253 11.5574 0.2847 7.9849 1.1011 1.6437 79.0749 1.6437 

AVG. RANKS 5.5714 6.50 0 0 1.0 0 0 0 5.7143 2.5714 3.5714 7.50 0 0 3.5714 

Table 13 

The number of selected features. 

Data set OFS-Density Grafting α-investing OSFS Fast-OSFS SAOLA OS-SA OFS-A3M 

IONOSPHERE 3.7 31.7 7.7 3.7 4 3.9 0 5.8 

WDBC 5.7 15.7 18.8 3 4 2 3.1 15.2 

SONAR 4.1 29.4 12.1 2.9 3 2.6 11.4 23 

HILL 6 1 9.3 0 0 0 0 19.1 

COLON 5.8 66.3 1 1.9 2.5 3.9 7.4 32.1 

SRBCT 4.6 74.9 1 2.3 5.1 20.3 8.2 11.7 

LUNG2 20.5 166.7 37.5 6 9.9 29.7 0 21.7 

LYMPHOMA 25.8 71.3 3.4 3.2 5.6 37 4.1 6.9 

GLIOMA 5.5 58.4 3.4 1.5 4 16.7 0 21.5 

MLL 8.7 53.6 9.5 2.6 5.1 32.9 0 8.9 

PROSTATE 5.4 114.2 2 1.7 3.5 11.7 6.9 50.1 

DLBCL 10.4 61.2 7.3 2.3 5.1 20.2 0 13 

LEUKEMIA 4.2 81.6 1.9 2.6 5.3 20.3 6.4 14.6 

ARCENE 60.4 122.3 8.3 2.5 5.5 19.1 0 44.4 

AVG. ACCURACY 12.2 67.7 8.8 2.5 4.4 15.7 3.3 20.5 

AVG. RANKS 4.5357 7.7143 4.2143 1.9286 3.4643 5.0357 2.8929 6.2143 

sets are very sparse and Alpha-investing can only select the 

first few features of these data sets. 
• OFS-Density vs. OSFS. There is no significant difference between 

OFS-Density and OSFS on predictive accuracy, running time and 

number of selected features. OFS-Density outperforms OSFS on 

eleven of the fourteen datasets at least. On dataset HILL, OSFS 

cannot select any features and gets the prediction accuracy 0. 

In addition, OFS-Density is faster than OSFS in running time. 

OSFS selects the least number of features among all these com- 

pared algorithms. Thus, some important information is proba- 

bly missed which causes the low predictive accuracy. 

• OFS-Density vs. Fast-OSFS. There is no significant difference be- 

tween OFS-A3M and Fast-OSFS on predictive accuracy. OFS-A3M 

performs better than Fast-OSFS on ten of the fourteen datasets. 

Meanwhile, Fast-OSFS is faster than OFS-A3M. However, as sim- 

ilar to OSFS, Fast-OSFS also selects very few features on data 

sets, which leads to the missing of some important information. 
• OFS-Density vs. SAOLA. There is no significant difference be- 

tween OFS-Density and SAOLA on predictive accuracy with 

KNN, SVM, and CART. SAOLA is faster than OFS-Density and se- 

lects more features than OFS-Density. However, OFS-A3M out- 

performs SAOLA on nine of the fourteen datasets at least in pre- 
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dictive accuracy. Thus, the features selected by OFS-Density is 

more discriminative. Meanwhile, on the data set HILL, SAOLA 

cannot select any features and get the predictive accuracy 0. 

This demonstrates that SAOLA cannot handle some types of 

data well. 
• OFS-Density vs. OS-NRRSARA-SA. There is a significant differ- 

ence between OFS-Density and OS-NRRSARA-SA on predictive 

accuracy. On seven of the fourteen datasets, OS-NRRSARA-SA 

selects all the features of the datasets and we set the predictive 

accuracy and number of selected features to 0. The main rea- 

son for this is OS-NRRSARA-SA cannot deal with continues fea- 

tures directly and it can not select discriminative features after 

data converted. Meanwhile, OS-NRRSARA-SA spends the max- 

imum running time among all these compared methods. OS- 

NRRSARA-SA uses the classical rough set for feature selection 

which makes it need not set any parameters before learning. 

However, it cannot deal with real-valued data directly and can- 

not handle some datasets well. 
• OFS-Density vs. OFS-A3M. There is no significant difference be- 

tween OFS-Density and OFS-A3M on predictive accuracy. OFS- 

Density performs a little better than OFS-A3M. Meanwhile, OFS- 

A3M runs faster and selects more features. Similar to OFS- 

Density, OFS-A3M also uses adaptive neighborhood rough set 

relation for feature selection. However, OFS-A3M uses the ex- 

actly equal constraint for feature redundant analysis, which 

makes it select more features and cause more redundancy. 

In our experiments, we have conducted 10-fold cross-validation 

on each data set. We randomly divided the instances of each 

data set into 10 folds. The instances used for feature selection in 

Sections 5.4 and 5.5 are different. Thus, the corresponding selected 

features in Sections 5.4 and 5.5 are probably different. For OFS- 

Density, there is not only one combination of features, which can 

make the dependency of the selected feature subset achieve the 

maximal. Thus, although given the same data set, if the training in- 

stances are different, the final selected feature subset will be prob- 

ably different too. 

In sum, OFS-Density is not faster than some compared methods, 

but it outperforms all competing algorithms on predictive accuracy. 

6. Conclusion 

In this paper, we proposed a new method for online stream- 

ing feature selection. Our new algorithm is based on neighborhood 

rough set theory which does not require domain information be- 

fore learning. We proposed a new density neighborhood relation 

which automatically decides the number of neighbors during de- 

pendency calculation by the density information of the surround- 

ing instances. With this new neighborhood relation, we need not 

specify any parameters in advance. Meanwhile, we use a fuzzy 

equal constraint for redundancy analysis which makes the selected 

feature subset small and discriminative. As compared to eight tra- 

ditional feature selection methods and seven state-of-the-art on- 

line streaming feature selection algorithms, the proposed algorithm 

is superior to traditional feature selection methods with the same 

number of features and performs better than online streaming fea- 

ture selection algorithms in an online manner. As we have known, 

neighborhood rough set is one of tolerance rough sets. In our fu- 

ture work, we will attempt to apply fuzzy rough sets in online 

streaming feature selection. 
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